Analysis of the ECGI inverse problem solution with respect to the measurement boundary size and the distribution of noise

Author:

Addouche Mohammed,Bouarroudj Nadra,Jday Fadhel,Henry Jacques,Zemzemi NejibORCID

Abstract

In this work, we analyze the influence of adding a body surface missing data on the solution of the electrocardiographic imaging inverse problem. The difficulty comes from the fact that the measured Cauchy data is provided only on a part of the body surface and thus a missing data boundary is adjacent to a measured boundary. In order to construct the electrical potential on the heart surface, we use an optimal control approach where the unknown potential at the external boundary is also part of the control variables. We theoretically compare this case to the case where the Dirichlet boundary condition is given on the full accessible surface. We then compare both cases and based on the distribution of noise in the measurements, we conclude whether or not it is worth to use all the data. We use the method of factorization of elliptic boundary value problems combined with the finite element method. We illustrate the theoretical results by some numerical simulations in a cylindrical domain. We numerically study the effect of the size of the missing data zone on the accuracy of the inverse solution.

Publisher

EDP Sciences

Subject

Modelling and Simulation,Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An expert review of the inverse problem in electrocardiographic imaging for the non-invasive identification of atrial fibrillation drivers;Computer Methods and Programs in Biomedicine;2023-10

2. A diagonal finite element-projection-proximal gradient algorithm for elliptic optimal control problem;Computers & Mathematics with Applications;2023-10

3. The electrodes shirt design for ECG imaging;2022 7th International Conference on Biomedical Signal and Image Processing (ICBIP);2022-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3