Extinction and ergodic stationary distribution of a Markovian-switching prey-predator model with additional food for predator

Author:

Guo Xiaoxia,Ruan DehanORCID

Abstract

In this work we have studied a stochastic predator-prey model where the prey grows logistically in the absence of predator. All parameters but carrying capacity have been perturbed with telephone noise. The prey’s growth rate and the predator’s death rate have also been perturbed with white noises. Both of these noises have been proved extremely useful to model rapidly fluctuating phenomena Dimentberg (1988). The conditions under which extinction of predator and prey populations occur have been established. We also give sufficient conditions for positive recurrence and the existence of an ergodic stationary distribution of the positive solution, red which in stochastic predator-prey systems means that the predator and prey populations can be persistent, that is to say, the predator and prey populations can be sustain a quantity that is neither too much nor too little. In our analysis, it is found that the environmental noise plays an important role in extinction as well as coexistence of prey and predator populations. It is shown in numerical simulation that larger white noise intensity will lead to the extinction of the population, while telephone noise may delay or reduce the risk of species extinction.

Funder

the Innovation Research for the postgraduates of Guangzhou University under Grant

the Graduate Joint Training Program of the Guangdong Educational Department, China

Publisher

EDP Sciences

Subject

Modelling and Simulation,Applied Mathematics

Reference30 articles.

1. Stochastic predator–prey model with Allee effect on prey

2. Allee W., Animal aggregations: A study in general sociology, University of Chicago Press, Chicago (1931).

3. Stochastic prey-predator system with foraging arena scheme

4. A predator-prey model with disease in the prey

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3