Simulations of autonomous fluid pulses between active elastic walls using the 1D-IRBFN method

Author:

Ahmed Fatima Z.,Mohammed Mayada G.,Strunin Dmitry V.,Ngo-Cong Duc

Abstract

We present numerical solutions of the semi-empirical model of self-propagating fluid pulses (auto-pulses) through the channel simulating an artificial artery. The key mechanism behind the model is the active motion of the walls in line with the earlier model of Roberts. Our model is autonomous, nonlinear and is based on the partial differential equation describing the displacement of the wall in time and along the channel. A theoretical plane configuration is adopted for the walls at rest. For solving the equation we used the One-dimensional Integrated Radial Basis Function Network (1D-IRBFN) method. We demonstrated that different initial conditions always lead to the settling of pulse trains where an individual pulse has certain speed and amplitude controlled by the governing equation. A variety of pulse solutions is obtained using homogeneous and periodic boundary conditions. The dynamics of one, two, and three pulses per period are explored. The fluid mass flux due to the pulses is calculated.

Publisher

EDP Sciences

Subject

Modeling and Simulation,Applied Mathematics

Reference21 articles.

1. Numerical solution for the fluid flow between active elastic walls

2. Haff G.G. and Triplett N.T., Essentials of Strength Training and Conditioning, 4th edition. Human Kinetics, (2016)

3. Simulation of viscous and viscoelastic flows using a RBF-Galerkin approach

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3