Singular perturbed components of flows – linear precursors of shock waves

Author:

Chashechkin Yuli D.ORCID

Abstract

A comparative analysis of the infinitesimal symmetries of various well-known systems of governing equations used for mathematical descriptions of flows and waves in fluids has shown that only the basic system of equations, including the empirical equation of state and the partial differential equations of mass, momentum, energy and matter transport, is characterized by a ten-parameter Galilean transformation group. An analysis of the complete solutions of the linearized system of fundamental equations for weakly dissipating media reveals a wide class of previously unknown singularly perturbed solutions supplementing well investigated regular solutions describing propagating waves. Fine flow components, whose geometry is typical for internal boundary layers that supplement the wave fields exist both at the boundaries and inside the volume of the liquid, are classified as linear precursors of shock waves. The calculated pattern of periodic internal waves beams covered with high-gradient envelopes agrees with data from independently performed experiments on measurements and visualization of the fine structure of linear and nonlinear waves in continuously stratified media.

Funder

FASO Russia Project

RFBR

Publisher

EDP Sciences

Subject

Modeling and Simulation,Applied Mathematics

Reference43 articles.

1. Andreev V.K., Kaptsov O.V., Pukhnachev V.V. and Rodionov A.A., The Application of Group Theoretical Methods in Hydrodynamics. Science, Novosibirsk (1994) 318.

2. Calculation and measurement of conical beams of three-dimensional periodic internal waves excited by a vertically oscillating piston

3. Invariant properties of systems of equations of the mechanics of inhomogeneous fluids

4. Bruyatskiy E.V., Turbulent Stratified Jet Flows. Naukova Dumka, Kiev (1986) 296.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3