Author:
Bykov V.,Gubernov V.V.,Maas U.
Abstract
The kinetic mechanism of hydrogen combustion is the most investigated combustion system. This is due to extreme importance of the mechanism for combustion processes, i.e. it is present as a sub-mechanism in all mechanisms for hydrocarbon combustion systems. Therefore, detailed aspects of hydrogen flames are still under active investigations, e.g. under elevated pressure, under conditions of different heat losses intensities and local equivalence ratios etc. For this purpose, the burner stabilized flame configuration is an efficient tool to study different aspects of chemical kinetics by varying the stand-off distance, pressure, temperature of the burner and mixture compositions.
In the present work, a flat porous plug burner flame configuration is revisited. A hydrogen/air combustion system is considered with detailed molecular transport including thermo-diffusion and with 8 different chemical reaction mechanisms. Detailed numerical investigations are performed to single out the role of chemical kinetics on the loss of stability and on the dynamics of the flame oscillations. As a main outcome, it was found/demonstrated that the results of critical values, e.g. critical mass flow rate, weighted frequency of oscillations and blow-off velocity, with increasing the pressure scatter almost randomly. Thus, these parameters can be considered as independent and can be used to improve and to validate the mechanisms of chemical kinetics for the unsteady dynamics.
Funder
Deutsche Forschungsgemeinschaft
Russian Foundation for Basic Research
Subject
Modelling and Simulation,Applied Mathematics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献