VAEFL: Integrating variational autoencoders for privacy preservation and performance retention in federated learning

Author:

Li ZhixinORCID,Liu YicunORCID,Li Jiale,Ye Guangnan,Chai Hongfeng,Lu Zhihui,Wu JieORCID

Abstract

Federated Learning (FL) heralds a paradigm shift in the training of artificial intelligence (AI) models by fostering collaborative model training while safeguarding client data privacy. In sectors where data sensitivity and AI model security are of paramount importance, such as fintech and biomedicine, maintaining the utility of models without compromising privacy is crucial with the growing application of AI technologies. Therefore, the adoption of FL is attracting significant attention. However, traditional FL methods are susceptible to Deep Leakage from Gradients (DLG) attacks, and typical defensive strategies in current research, such as secure multi-party computation and differential privacy, often lead to excessive computational costs or significant decreases in model accuracy. To address DLG attacks in FL, this study introduces VAEFL, an innovative FL framework that incorporates Variational Autoencoders (VAEs) to enhance privacy protection without undermining the predictive prowess of the models. VAEFL strategically partitions the model into a private encoder and a public decoder. The private encoder, remaining local, transmutes sensitive data into a latent space fortified for privacy, while the public decoder and classifier, through collaborative training across clients, learn to derive precise predictions from the encoded data. This bifurcation ensures that sensitive data attributes are not disclosed, circumventing gradient leakage attacks and simultaneously allowing the global model to benefit from the diverse knowledge of client datasets. Comprehensive experiments demonstrate that VAEFL not only surpasses standard FL benchmarks in privacy preservation but also maintains competitive performance in predictive tasks. VAEFL thus establishes a novel equilibrium between data privacy and model utility, offering a secure and efficient FL approach for the sensitive application of FL in the financial domain.

Publisher

EDP Sciences

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3