Exploration of transferable deep learning-aided radio frequency fingerprint identification systems

Author:

Shen GuanxiongORCID,Zhang JunqingORCID

Abstract

Radio frequency fingerprint identification (RFFI) shows great potential as a means for authenticating wireless devices. As RFFI can be addressed as a classification problem, deep learning techniques are widely utilized in modern RFFI systems for their outstanding performance. RFFI is suitable for securing the legacy existing Internet of Things (IoT) networks since it does not require any modifications to the existing end-node hardware and communication protocols. However, most deep learning-based RFFI systems require the collection of a great number of labelled signals for training, which is time-consuming and not ideal, especially for the IoT end nodes that are already deployed and configured with long transmission intervals. Moreover, the long time required to train a neural network from scratch also limits rapid deployment on legacy IoT networks. To address the above issues, two transferable RFFI protocols are proposed in this paper leveraging the concept of transfer learning. More specifically, they rely on fine-tuning and distance metric learning, respectively, and only require only a small amount of signals from the legacy IoT network. As the dataset used for transfer is small, we propose to apply augmentation in the transfer process to generate more training signals to improve performance. A LoRa-RFFI testbed consisting of 40 commercial-off-the-shelf (COTS) LoRa IoT devices and a software-defined radio (SDR) receiver is built to experimentally evaluate the proposed approaches. The experimental results demonstrate that both the fine-tuning and distance metric learning-based RFFI approaches can be rapidly transferred to another IoT network with less than ten signals from each LoRa device. The classification accuracy is over 90%, and the augmentation technique can improve the accuracy by up to 20%.

Funder

Engineering and Physical Sciences Research Council

ational Key Research and Development Program of China

Publisher

EDP Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3