Sensor network prediction based on spatial and temporal GNN

Author:

Liu Peng,Li Zhuang,Cong Yang,Xu Yuheng

Abstract

Multi-sensor prediction is a hotspot for research and development in sensor management technologies. Thanks to artificial intelligence, researchers have been able to effectively use neural networks and traditional artificial intelligence approaches to multi-sensor prediction in recent years. In this model, we try to present the sensors network as an unweighted graph, based on the GNN with spatial and temporal features, combine the characteristics of the Gated recurrent unit with temporal context, and use the Graph Neural Network to predict sensor feature. We tackle the issue of poor sensor network efficiency and sluggish speed without data fusion.

Publisher

EDP Sciences

Subject

General Medicine

Reference29 articles.

1. Sze S M 1969 Physics of Semiconductor Devices (New York: Wiley–Interscience)

2. Dorman L I 1975 Variations of Galactic Cosmic Rays (Moscow: Moscow State University Press) p 103

3. Caplar R and Kulisic P 1973 Proc. Int. Conf. on Nuclear Physics (Munich) vol 1 (Amsterdam: North-Holland/American Elsevier) p 517

4. Szytula A and Leciejewicz J 1989 Handbook on the Physics and Chemistry of Rare Earths vol 12, ed Gschneidner K A and Erwin L (Amsterdam: Elsevier) p 133

5. Kuhn T 1998 Density matrix theory of coherent ultrafast dynamics Theory of Transport Properties of Semiconductor Nanostructures (Electronic Materials vol 4) ed Schöll E (London: Chapman and Hall) chapter 6 pp 173–214.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3