Using Decision Tree Algorithms in Detecting Spam Emails Written in Malay: A Comparison Study

Author:

Abdulrahman Saifuldeen H,Salim Mohammad

Abstract

Emails have become the most economical and fastest communication forms. However, during the past few years, the increment of email users has dramatically increased spam emails. Various anti-spam techniques have been developed to minimize if not eliminate the spam problem. In this paper, we study the disparity in the effectiveness of using different decision tree algorithms in email classification and combat spam problems. For that, we have chosen Universiti Utara Malaysia emails as a case study. To achieve the best possible classification accuracy, we compared all chosen algorithms’ performance, which are Random Forest, LMT, Decision Stump, J48, Random Tree, and REP Tree. The experimental results showed that the Decision Stump algorithm is more effective to be used in classifying the emails, and the F-measures, Precision, and recall score for the Decision Stump algorithm are higher than the other comparison algorithms.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Naive Bayesian Spam Filtering;Highlights in Science, Engineering and Technology;2023-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3