Investigating the feature extraction capabilities of non-negative matrix factorisation algorithms for black-and-white images

Author:

Liew How Hui,Ng Wei Shean,Chen Huey Voon

Abstract

Nonnegative matrix factorisation (NMF) is a class of matrix factorisation methods to approximate a nonnegative matrix as a product of two nonnegative matrices. To derive NMF algorithms, the optimisation problems for NMF are developed and the divergence used in the optimisation problems can have many forms. The β-divergence is the most popular and is used in this research. The NMF algorithms derived from the β-divergence have a few hyperparameters including the rank and the initial conditions. This paper surveyed on the software implementations of the NMF algorithms and then applied the open source software implementations of Frobenius norm based NMF algorithm, KL divergence based NMF algorithm and binary matrix factorisation (BMF) with fixed ranks to three classes of black-and-white images. For black-and-white images with a lot of common features (like MNIST), KL divergence NMF with appropriate initial guess is empirically found to be best NMF algorithm for black-and-white image feature extraction compare to other NMF algorithms. All NMF algorithms for data with little to no common features are useful in generating feature images which can be used to inspire art design as well as in the realm of computer vision.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3