Probability of Informed No-Tradings: A Copula-Based PIN Model with Zero-Inflated Poisson Distributions

Author:

Kao Chu-Lan Michael,Lin Emily,Wu Shan-Chi

Abstract

Classical probability of informed trading (PIN) models assume that, given the information scenario, the number of buy and sell order flows are independently Poisson distributed, which imposes an assumption on the probability of no-trades. However, empirical data shows that the implied probabilities of no-trades do not match the aforementioned Poisson and independent assumptions. Therefore, we propose a new PIN model that better fits the data by using zero-inflated Poisson distributions and copula functions, which allow us to match the probability of no-trades. The expectation conditional maximization (ECM) is further proposed to tackle the parameter fittings, which is verified by simulation studies. The empirical studies show that this model outperforms the original PIN models, with significant parameters on the zero-inflations as well as copulas. In particular, we find that it is possible for an information to simultaneously increase the probability of no trade and boost up the average number of transactions, which contradicts the intuition.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3