Bigger perturbations enhance higher trophic levels biomass, increase transfer efficiency and may sustain for bigger plankton biodiversity

Author:

Priyadarshi Anupam,Chandra Ram

Abstract

Highly intermittent phytoplankton is ubiquitously observed when measurements are performed at micro-scale (< 1mm). The conventional way of plankton modelling is based on the mean-field approach in which only the first central-moment approximations is retained and ignored higher central moments). The conventional modeling approach may be suitable for mesoor bigger scale (km) but it is inappropriate for micro-scale (< 1mm) where observed overlap in the intermittent spatial distributions of predators and prey become more important for determining the flow of nutrients and energy up the food chain. A new modelling approach called closure modelling is developed to account intermittent phytoplankton using Reynold’s decomposition from turbulence theory and retaining higher central moment approximations in Taylor series. In this study, we developed a NPZD compartmental model to describe the interactions of nutrient (N), phytoplankton (P), zooplankton (Z) and detritus (D) using closure modelling which accounts mean and fluctuating parts of these plankton variables. The results obtained in NPZD compartmental model confirm that perturbation / heterogeneity supports higher trophic levels involved in the model. This reassured the earlier results observed in case of NP and NPZ models in which perturbations enhances P-biomass and Z-biomass respectively. It is observed that perturbation / heterogeneity and a statistical quantity called coefficient of variations of phytoplankton (CVp) (ratio of standard deviation and mean) are positively associated in plankton ecosystems. The perturbations / heterogeneity leads to higher transfer efficiency (Z-biomass/P-biomass) in plankton ecosystems. These results are robust i.e. independent of parameters choices. Perturbation / heterogeneity effects on community structure, species richness and may quantify the energy transfer along trophic levels through biological process from primary production to higher trophic levels. Based on our study, we hypothesize that the locations with high (CVp) are highly heterogeneous and have high transfer efficiency, while low (CVp) locations are less heterogeneous around Tokyo Bay.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3