Face recognition Attendance system using HOG and CNN algorithm

Author:

Kapse Aditya,Kamble Tejas,Lohar Ashutosh,Chaudhari Shubham,Puri Digambar

Abstract

Recognition of faces is one of the most useful applications and has a critical role in the technological field. Recognizing the face is a lively concern for authentication, specifically in the context of taking attendance. Attendance system using face recognition is a process of recognizing the profile of the person by using facial features supported by various computing technology and monitoring. The evolution of this process is focused on achieving the digitizing of the orthodox system of taking manual attendance. Current approaches for taking attendance are monotonous and inefficient. Manual records of attendance can be easily manipulated. The orthodox process of checking attendance such as current fingerprint or card scanning systems are susceptible to proxies. To tackle these issues, this paper has been proposed. The proposed system makes the utilization of various algorithms such as histogram of oriented Gradient (HOG), convolutional neural network (CNN) and support vector machine (SVM). After the face is recognized, the reports of attendance are going to be created, maintained and stored in excel format. The system is examined in various situations like illumination, head movements, and the variation of distance between the face and cameras. The proposed system was found to be efficient and reliable for marking attendance during a classroom with negligible time consumption and no manual work. This system is inexpensive as less installation is required.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart Attendance Monitoring System Using Face Recognition for People with Disabilities (PwDs);2023 IEEE International Smart Cities Conference (ISC2);2023-09-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3