Reaction rate coefficient k20 and temperature coefficient Θ in organic waste thermal disintegration

Author:

Myszograj Sylwia

Abstract

It was described the test of sewage sludge and organic fraction of municipal mixed solid waste thermal disintegration process. The waste activated sludge used during the tests was collected from the secondary settlement tank in a mechanical-biological wastewater treatment plant. The biowaste used in the studies was collected from an area of new buildings. It was noticed from means values of Soluble Chemical Oxygen Demand (SCOD) plot that both heating temperature and time, influence the amount of dissolved COD. The observations indicate that changes of SCOD can be described by an increasing, differentiable function of time and the rate of change of the soluble COD in the hydrolysates, in time is proportional to the difference of the maximum values of SCOD and its value in time, which leads to the relationship of the first-order ordinary differential equation. The process effectiveness depending on the temperature was described with the mathematical model including Van't Hoff-Arrhenius equation. Inspection of the data and some preliminary fits indicates, that for the description of changes in SCOD terms of time and temperature were adopted the form of nonlinear mixed model. Values of k20 indicator and Θ parameter depend on the substrate type. For waste activated sludge thermal disintegration, value of reaction speed indicator k20 was 0.028 h-1 (0,67 d-1), and value of temperature indicator equalled Θ = 1.024. For thermal disintegration of biological waste, value of reaction speed indicator k20 was 0.016 h-1 (0,38 d-1), and value of temperature indicator equalled Θ = 1.016.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3