Modelling the cyclic response of structural steel for FEM analyses

Author:

Zub Ciprian Ionut,Stratan Aurel,Dubina Dan

Abstract

Modelling the cyclic response of structural steel plays an important role in the design and performance assessment of steel structures. Up to date, several mathematical models were developed to simulate metal plasticity, but only some of them were implemented in Finite Element Method (FEM) based software packages such as Abaqus, by using incremental plasticity procedures. Within this article, the “built-in” combined isotropic/kinematic hardening model is used to model metal plasticity under cyclic loading regime. A brief description of the constitutive model together with the calibration procedure of the material parameters based on experimental data are presented. Finite element analyseswere carried out on simplified FEM models to provide numerical predictions using the calibrated material parameters. Since the “built-in” combined model has several limitations (especially related to the isotropic component), adjustments of the material parameters were made to accommodate to different loading histories. The chosen material model and the calibrated input parameters are validated byanalysing the FEM predictions to be in good agreement with the experimental results with respect to cyclic behaviour and failure mode.

Publisher

EDP Sciences

Subject

General Medicine

Reference4 articles.

1. ABAQUS “ABAQUS Documentation”, Dassault Systèmes, Providence, RI, USA, (2014).

2. Hall E.O.. Yield point phenomena in metals and alloys. New York: Plenum Press (1970).

3. Zub C.I., Stratan A., Dogariu A., Dubina D.. Development of a finite element model for a buckling restrained brace, Procc. of the Romanian Academy, series A, no. 19(4) (2018).

4. Lemaitre J., Chaboche J.L., Mechanics of Solid Materials, Cambridge University Press (1990).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3