Author:
El Mansouri Omar,El Mourabit Yousef,El Habouz Youssef
Abstract
One of the most common medical imaging methods is a chest x-ray, as it contributes to the early detection of lung cancer compared to other methods. this work presents the use of a generative adversarial network to perform lung chest x-ray image segmentation. The network is two frameworks neural (generator and discriminator). In our work the generator is trained to generate a mask for the input of a given original image, the discriminator distinguishes between the original mask and the generated mask, the final objective is to generate masks for the input. The model is trained and evaluated, well generalized experimental results of the JSRT dataset reveal that the proposed model can a dice score of 0.9778, which is better than other reported state-of-the-art results.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献