Author:
Chaabi Meryem,Hamlich Mohamed
Abstract
Product defect detection is a challenging task, especially in situations where is difficult and costly to collect defect samples. Which make it quite difficult to apply supervised algorithms as their performances decrease by training the model on imbalanced data. To tackle this problem, researchers used data augmentation and one-class classification to detect defects in industrial areas. In this paper, we list defect detection applications for imbalanced industrial data and we report the benefits and limitation of those methods.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献