Author:
Boualoulou N.,Nsiri B.,Drissi T. Belhoussine,Zayrit S.
Abstract
Parkinson’s disease (PD) is one of the neurodegenerative diseases. The neuronal loss caused by this disease leads to symptoms such as lack of initiative, depressive states, psychological disorders, and impairment of cognitive functions as well as voice dysfunctions. This paper aims to propose a system of automatic recognition of Parkinson’s disease by voice analysis. In this system, we are based on a database of 38 recordings, 20 people with Parkinson’s disease and 18 healthy people pronounce the vowel /a/.at first, we have decomposed the vocal signal of each patient by the Empirical Mode Decomposition (EMD), then, we extract from 1 to 12 coefficients of the Mel Frequency Cepstral Coefficients (MFCC), to obtain the voiceprint from each voice sample, we compressed the frames by computing their average value. At the end of the classification, we have used the validation scheme “holdout” as well as the K-nearest neighbor (KNN) classifier, the performance of this classification gives accuracy up to 86,67% when applied to 80% of the database as training data.
Reference29 articles.
1. Parkinson J., ” An essay on the shaking palsy. London: Whittingham and Rowland, 1817”. Classics in neurology. Huntington, NY: Robert E. Krieger Publishing Co lnc, 1971, p. 158-191.
2. Hireš M., Gazda M., Drotár P., Pah N. D., Motin M. A and Kumar D. K.. “Convolutional neural network ensemble for Parkinson’s disease detection from voice recordings”. Computers in biology and medicine, 2021, p. 105021.
3. The effects of a simulated fMRI environment on voice intensity in individuals with Parkinson's disease hypophonia and older healthy adults
4. Diagnosing Parkinson’s disease by means of ensemble classification of patients’ voice samples
5. A novel pre-processing technique in pathologic voice detection: Application to Parkinson’s disease phonation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献