Author:
Dosiyev Adıgüzel A.,Reis Rifat
Abstract
A new method for the solution of a nonlocal boundary value problem with integral boundary condition for Laplace's equation on a rectangular domain is proposed and justified. The solution of the given problem is defined as a solution of the Dirichlet problem by constructing the approximate value of the unknown boundary function on the side of the rectangle where the integral boundary condition was given. Further, the five point approximation of the Laplace operator is used on the way of finding the uniform estimation of the error of the solution which is order of 0(h2), where hi s the mesh size. Numerical experiments are given to support the theoretical analysis made.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献