Abstract
An analytical solution is found to the problem of maximising the time spent in the first quadrant by the two-dimensional diffusion process (X(t), Y(t)), where Y(t) is a controlled Brownian motion and X(t) is proportional to its integral. Moreover, we force the process to exit the first quadrant through the y-axis. This type of problem is known as LQG homing and is very difficult to solve explicitly, especially in two or more dimensions. Here the partial differential equation satisfied by a transformation of the value function is solved by making use of the method of separation of variables. The exact solution is expressed as an infinite sum of Airy functions.
Reference8 articles.
1. Abramowitz M., Stegun I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1965) 1046 pp.
2. Zeros of Airy Function and Relaxation Process
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献