Author:
Desai Aditya,Kalaskar Shashank,Kumbhar Omkar,Dhumal Rashmi
Abstract
Usage of internet and social media backgrounds tends in the use of sending, receiving and posting of negative, harmful, false or mean content about another individual which thus means Cyberbullying. Bullying over social media also works the same as threatening, calumny, and chastising the individual. Cyberbullying has led to a severe increase in mental health problems, especially among the young generation. It has resulted in lower self-esteem, increased suicidal ideation. Unless some measure against cyberbullying is taken, self-esteem and mental health issues will affect an entire generation of young adults. Many of the traditional machine learning models have been implemented in the past for the automatic detection of cyberbullying on social media. But these models have not considered all the necessary features that can be used to identify or classify a statement or post as bullying. In this paper, we proposed a model based on various features that should be considered while detecting cyberbullying and implement a few features with the help of a bidirectional deep learning model called BERT.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献