Arabic Grammatical Error Detection Using Transformers-based Pretrained Language Models

Author:

AlOyaynaa Sarah,Kotb Yasser

Abstract

This paper presents a new study to use pre-trained language models based on the transformers for Arabic grammatical error detection (GED). We proposed fine-tuned language models based on pre-trained language models called AraBERT and M-BERT to perform Arabic GED on two approaches, which are the token level and sentence level. Fine-tuning was done with different publicly available Arabic datasets. The proposed models outperform similar studies with F1 value of 0.87, recall of 0.90, precision of 0.83 at the token level, and F1 of 0.98, recall of 0.99, and precision of 0.97 at the sentence level. Whereas the other studies in the same field (i.e., GED) results less than the current study (e.g., F0.5 of 69.21). Moreover, the current study shows that the fine-tuned language models that were built on the monolingual pre-trained language models result in better performance than the multilingual pre-trained language models in Arabic.

Publisher

EDP Sciences

Subject

General Medicine

Reference20 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PERCORE: A Deep Learning-Based Framework for Persian Spelling Correction with Phonetic Analysis;International Journal of Computational Intelligence Systems;2024-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3