Detecting and recognizing seven segment digits using a deep learning approach

Author:

Low Loi Ming,Mohd Salleh Faridah Hani,Law Yi Feng,Zakaria Nor Zaity

Abstract

Recognizing seven-segment digits is a specific task within the broader field of text detection and recognition. Seven-segment digits are commonly used for displaying numerical information in various applications. However, accurately detecting and recognizing these digits can be challenging due to factors like LED bleeding, glare, and the presence of printed text alongside the digits. The experiment described in this paper aims to identify the most effective models for detecting and recognizing texts and assess their accuracy and performance under different environmental conditions. The experiment reveals that DBNet from PaddleOCR is the best model for text detection, while PARSeq has the best accuracy for recognizing seven-segment digits on the 7Seg dataset. PARSeq also performs well on a custom dataset with lower LED ratios but struggles with glare conditions. Excluding special characters improves accuracy in all conditions.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3