Dissecting Denial of Service (DoS) Syn Flood Attack Dynamics and Impacts in Vehicular Communication Systems

Author:

Zamrai Muhammad Arif Hakimi,Mohamad Yusof Kamaludin,Azizan Afizi

Abstract

In the rapidly evolving landscape of vehicular networks, the resilience of vehicular communication systems against Denial of Service (DoS) attacks is critical. Existing research often overlooks the nuanced dynamics of such attacks, particularly in terms of packet size variability and vehicle mobility within Software-Define Internet of Vehicles (SD-IoV) systems. This study addresses this research gap by conducting a detailed analysis of SYN flood DoS attack patterns and their impact on SDN-controlled vehicular networks. This research examines the effects of different packet sizes in SYN packet—1 byte, 200 bytes, 360 bytes, and 1400 bytes—and explore how these packet size variations influence the efficacy of the attacks and the resultant downtime experienced by the victim car. This research findings reveal that SYN flood attacks employing minimal 1-byte packets can cause prolonged unresponsiveness in the victim vehicle, leading to a drastic drop in packet throughput. This research underscores the subtleties of DoS attack strategies and their significant implications on the functionality and safety of IoV environments. The alarming potential of such refined and coordinated DoS attack highlights an urgent need for the development of robust defense mechanisms that can adapt to the sophisticated landscape of vehicular cyber threats.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3