Denoising diffusion implicit model for bearing fault diagnosis under different working loads

Author:

Wong Toong Yang,Lim Meng Hee,Ngui Wai Keng,Salman Leong Mohd

Abstract

Rotating machineries always operating under different loads and suffer from various types of bearing fault. Thus, bearing fault diagnosis is essential to prevent further loss or damage. Deep learning has been favoured over machine learning recently due to data explosion and its higher performance. In deep learning-based bearing fault diagnosis, vibration signals are usually transformed into images using time frequency analysis methods such as short-time Fourier transform, wavelet transform, and Hilbert-Huang transform. Convolutional neural network (CNN) is widely used for fault classification method. However, the training dataset and testing dataset usually have different load domains due to different working conditions. Obtaining training data of wide range of loadings are impractical and exhausting. Thus, this study is proposed to solve load domain adaptation using denoising diffusion implicit model (DDIM). In this study, synthetic images are generated using DDIM model while only convolutional neural network (CNN) is used as fault classification model. The classification accuracy of testing dataset is obtained using CNN models trained with original training dataset and augmented training dataset. The results showed that the synthetic scalograms could improve the performance of CNN model by 3.3% under different load domains.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3