Bearing Health Evaluation Model using Segmentive Technique and Cosine KNN in Different Loading Situations

Author:

Yap J.S.,Lim M.H.,Leong M. Salman

Abstract

Bearing faults are a common cause of machinery failure, and bearing vibration analysis is critical in preventing any unacceptable consequences of such failures. Advancements in smart data and computing make Artificial Intelligence (AI) preferable for bearing vibration analysis. Typically, signal processing and feature engineering are essential for achieving satisfactory classification accuracy. Additionally, a drop in classification accuracy is commonly observed during different loading situations due to the vastly varying vibration characteristics under different loads. This paper evaluates an AI model in variable loading situations using raw vibration signals, devoid of signal processing and feature engineering. The proposed AI model, Segmentive Cosine K-Nearest Neighbours (SCosKNN), demonstrated a higher overall classification accuracy of 90.6–94.3% in same loading situations, and 72.1–84.2% in different loading situations. An improvement of around 9% in same loadings and 10–14% in different loadings were observed compared to a model without Segmentive Technique

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3