Joint estimation and detection method based on turbo equalization framework and VAMP

Author:

Zhang Jiali,Wang Zhongyong,Jiang Hua,Gong Kexian,Sun Peng,Wang Wei

Abstract

In this letter, we consider the single-carrier frequency domain equalization (SC-FDE) system, and propose a low-complexity joint symbol detection and channel estimation algorithm based on the recently proposed vector approximate message passing (VAMP). Specifically, we leverage VAMP twice to estimate symbols and channels, respectively, in a turbo-like way. Moreover, this algorithm organically combines the gaussian mixture model (GMM), which can accurately simulate the sparse aggregation characteristics of the channel and effectively suppress inter symbol interference (ISI). The simulation results show that compared with the traditional linear minimum mean square error (LMMSE) estimation receiving algorithm and the existing generalized approximate message passing algorithm (GAMP), the designed receiving algorithm has significant advantages in channel estimation normalized mean square error (NMSE) and bit error ratio (BER) performance, where sharing the same order of complexity.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3