Lower and upper bounds for the linear arrangement problem on interval graphs

Author:

Quilliot Alain,Rebaine Djamal,Toussaint Hélène

Abstract

We deal here with theLinear Arrangement Problem(LAP) onintervalgraphs, any interval graph being given here together with its representation as theintersectiongraph of some collection of intervals, and so with relatedprecedenceandinclusionrelations. We first propose a lower boundLB, which happens to be tight in the case ofunit intervalgraphs. Next, we introduce the restriction PCLAP of LAP which is obtained by requiring any feasible solution of LAP to be consistent with theprecedencerelation, and prove that PCLAP can be solved in polynomial time. Finally, we show both theoretically and experimentally that PCLAP solutions are a good approximation for LAP onintervalgraphs.

Publisher

EDP Sciences

Subject

Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science

Reference32 articles.

1. A polynomial algorithm for minDSC on a subclass of series Parallel graphs

2. Ailon N., Charikar M. and Newman A., Aggregating inconsistent information: ranking and clustering. Proc. of 37th ACM Symp. Theory Comput. (STOC) (2005) 684–693.

3. Berge C., Graphes et Hypergraphes. Dunod Ed, Paris (1974).

4. On the cut polytope

5. Lower Bounds for the Minimum Linear Arrangement of a Graph

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3