Design and Simulation of Gamma Spectrometry Experiments in the CROCUS Reactor

Author:

Pakari O.,Lamirand V.,Vandereydt B.,Vitullo F.,Hursin M.,Kong C.,Pautz A.

Abstract

Gamma rays in nuclear reactors, arising either from fission or decay processes, significantly contribute to the heating and dose of the reactor components. Zero power research reactors offer the possibility to measure gamma rays in a purely neutronic environment, allowing for validation experiments of computed spectra, dose estimates, reactor noise and prompt to delayed gamma ratios. This data then contributes to models, code validation and photo atomic nuclear data evaluation. In order to contribute to aforementioned experimental data, gamma detection capabilities are being added to the CROCUS reactor facility. The CROCUS reactor is a two-zone, uranium-fueled light water moderated facility operated by the Laboratory for Reactor Physics and Systems Behaviour (LRS) at the Swiss Federal Institute of Technology Lausanne (EPFL). With a maximum power of 100W, it is a zero power reactor used for teaching and research, most recently for intrinsic and induced neutron noise studies. For future gamma detection applications in the CROCUS reactor, an array of four detectors - two large 5”x10” Bismuth Germanate (BGO) and two smaller Cerium Bromide (CeBr3) scintillators - was acquired. The BGO detectors are to be arbitrarily positioned in the core reflector and out of the vessel for measurements at arbitrary distances. The CeBr3 detectors on the other hand are small enough to be set in the guide tubes of the control rods for in-core measurements. We present a study of the neutron and gamma flux in the core and reflector using the MCNP 6.2 and Serpent 2 Monte Carlo codes for coupled neutron and photon transport criticality calculations. More specifically, we investigate and compare predicted spectra as well as reactivity worth of different envisioned experimental setups. We further predict pulse height spectra as well as doses to the crystals with and without cadmium shielding to estimate allowable reactor powers with respect to detector radiation hardness. The results serve as basis for calibration and aid in the design and regulatory approval of the experiments.

Publisher

EDP Sciences

Reference10 articles.

1. Lamirand V. P., Hursin M., Perret G., Frajtag P., Pakari O., & Pautz A. (2016). Future experimental programmes in the CROCUS reactor. In Conference proceedings of RRFM/IGORR 2016 (No. CONF, pp. 284–292).

2. Scionix Holland. Mechanical, optical and scintillation properties. https://scionix.nl/scintillation-crystals/#tab-id-4. Accessed: 11/12/18.

3. The Serpent Monte Carlo code: Status, development and applications in 2013

4. Werner C.J., et al., ”MCNP6.2 Release Notes”, Los Alamos National Laboratory, report LA-UR-18-20808 (2018).

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3