Measurements and simulations to investigate the feasibility of neutron multiplicity counting in the current mode of fission chambers

Author:

Nagy Lajos,Pázsit Imre,Pál Lénárd,Klujber Gergely,Szieberth Máté

Abstract

In two earlier papers [1], [2] we investigated the possibility of extracting traditional multiplicity count rates from the cumulants of fission chamber signals in current mode. It was shown that if all neutrons emitted from the sample simultaneously are also detected simultaneously, the multiplicity rates can be retrieved from the first three cumulants of the currents of up to three detectors, but the method breaks down if the detections of neutrons of common origin take place with a time delay spread wider than the pulse shape. To remedy these shortcomings, in this work we extended the theory to two- and three-point distributions (correlations). It was found thatthe integrals of suitably chosen two- and three-point moments with respect to the time differences become independent of the probability density of the time delays of detections. With this procedure, the multiplicity rates can be retrieved from the detector currents for arbitrary time delay distributions. To demonstrate the practical applicability of the proposed method, a measurement setup was designed and built. The statistics (shape and amplitude distribution) of the detector pulse were investigated as important parameters of the theoretical model. Simulations were performed to estimate the expected value of the multiplicity rates in the built setup. Measurements were performed and two types of moments (the mean and the covariance function) of the recorded detector signals were calculated. Values of singles rates were successfully recovered.

Publisher

EDP Sciences

Reference8 articles.

1. Multiplicity counting from fission chamber signals in the current mode

2. Multiplicity counting from fission detector signals with time delay effects

3. Ensslin N., Harker W. C., Krick M. S., Langner D. G., Pickrell M. M., and Stewart J. E., “Application guide to neutron multiplicity counting,” Los Alamos Report LA-13422-M, 1998.

4. A note on the multiplicity expressions in nuclear safeguards

5. Comments on the stochastic characteristics of fission chamber signals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3