Development of a driftless Johnson noise thermometer for nuclear applications

Author:

Pearce Jonathan V.,Bramley Paul,Cruickshank David

Abstract

Existing temperature sensors such as thermocouples and platinum resistance thermometers suffer from calibration drift, especially in harsh environments, due to mechanical and chemical changes (and transmutation in the case of nuclear applications). A solution to the drift problem is to use temperature sensors based on fundamental thermometry (primary thermometers) where the measured property is related to absolute temperature by a fundamental physical law. A Johnson noise thermometer is such a sensor and uses the measurement of the extremely small thermal voltage noise signals generated by any resistive element to determine temperature using the Johnson-Nyquist equation. A Johnson noise thermometer never needs calibration and is insensitive to the condition of the sensor material, which makes it ideally suited to long-term temperature measurement in harsh environments. These can include reactor coolant circuits, in-pile measurements, nuclear waste management and storage, and severe accident monitoring. There have been a number of previous attempts to develop a Johnson noise thermometer for the nuclear industry, but none have achieved commercialization because of technical difficulties. We describe the results of a collaboration between the National Physical Laboratory and Metrosol Limited, which has led to a new technique for measuring Johnson noise that overcomes the previous problems that have prevented commercialization. The results from a proof-of-principle prototype that demonstrates performance commensurate with the needs of nuclear applications is presented, together with details of progress towards the commercialization of the technology. The development partners have effected a step change in the application of primary thermometry to industrial applications and seek partners for field trials and further exploitation.

Publisher

EDP Sciences

Reference30 articles.

1. Extra points for thermometry

2. Kelly M.J., Johnston W.W. and Baumann C.D., “The Effects of Nuclear Radiation on Thermocouples”, in Temperature: Its Measurement and Control in Science and Industry (TMCSI), Vol. 3 part 2, pp. 265–269, ed. Herzfeld , Reinhold Publishing Corp, NY, 1962

3. Nuclear plant temperature instrumentation

4. Rempe J.L., Knudson D.L., Condie K.G., Curtis Wilkins S., “Evaluationof Specialized Thermocouples for High-Temperature In-Pile Testing. Proceedings of ICAPP ’06 Reno, nV USA, June 4–8, 2006, paper 6086

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sound-card-based Johnson noise thermometer;Measurement;2024-02

2. Superposition Johnson Noise Thermometer with a Fully Differential Structure;2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2022-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3