Simulation of delayed gamma rays from neutron-induced fissions using MCNP 6.1

Author:

De Stefano R.,Pérot B.,Carasco C.,Simon E.

Abstract

As part of its R&xD activities in the fields of radioactivewaste drum storage and homeland security, the NuclearMeasurement Laboratory of CEA Cadarache has started studiesrelated to the detection of induced delayed fission gamma rays asa signature of U/Pu presence either in radioactive wastes or incargo containers and luggage. The study described in the presentpaper explores the feasibility of detecting fission delayed gammarays of nuclear materials interrogated by a pulsed neutrongenerator. For this purpose, Monte Carlo simulations have beenperformed with ACT, the MNCP6 Activation Control Card.Simulated results have been compared with experimental data tovalidate the numerical model. Samples of uranium andplutonium have been irradiated for 2 hours with a pulsed D-Tneutron generator delivering 14 MeV neutrons with an averageemission of 8.107 n/s, which are thermalised in a graphite cellcalled REGAIN. At the end of irradiation, activated nuclearmaterials were placed in a low-background, high-resolutiongamma spectroscopy station in order to detect delayed gammarays emitted by fission products. Anomalies have been observedin the calculated time decay curve of fission delayed gamma rayswith MCNP6 ACT card, but the time behavior is correct for non-fission activated materials like aluminum or copper. On the otherhand, the number of counts recorded in the main simulatedgamma ray lines from activated nuclear material fission productsis consistent with the experimental results, thus validating thesimulation scheme in view of further studies on thecharacterization of radioactive waste drums or special nuclearmaterial detection in cargo containers.

Publisher

EDP Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of linac-based delayed gamma neutron activation technique for copper characterization in scrap metal by means of Monte Carlo modeling;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2023-01

2. Pulsed neutron interrogation with PVT plastic scintillators to detect nuclear materials;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2020-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3