Using laser remote heating to simulate extreme thermal heat loads on nuclear fuels

Author:

Vidal T.,Gallais L.,Faucheux J.,Capdevila H.,Pontillon Y.

Abstract

Up to now, predicting accurately the Fission Gas Release (FGR) from high burn up UO2 and/or MOX (Mixed Oxide) fuels at off-normal conditions, such as power transient, reactivity-initiated accident (RIA) and loss-of-coolant accident (LOCA), is still a significant and very challenging task. For this purpose, different R&D programs have been carried out in France, as well as in other countries. This has been done with a specific emphasis on mechanisms which promote the FGR under accidental conditions. These studies can be performed thanks to dedicated integral experiments conducted in-pile (i.e. in Materials Testing Reactor) with the corresponding cost and constraints, or at the laboratory scale with annealing tests which allow to be representative of specific parameters (thermal history for instance). During these annealing tests under well-known conditions (temperature, atmosphere), both the absolute level and the time dependence of the released gases should be monitored, together with the corresponding fuel micro-structural changes, since experimental knowledge of fission gas release alone is not efficient enough. This approach requires more and more accurate on-line measurements. This corresponds to the driving force of the present work. In this contribution, we will present our progress in developing an experimental platform that can submit nuclear fuel and cladding samples to annealing tests involving very high temperatures (up to 2500°C) and very fast temperature ramp (up to thousands of °C/s) with controlled thermal gradients and temporal dynamics. This new platform implements innovative instrumentation, such as optical diagnostics to measure fuel fragmentation kinetics and infrared pyrometry for temperature monitoring. This experiment is based on a high-power laser (1.5kW) coupled to an experimental chamber with controlled atmosphere (Ar, N2, or vacuum) and specific optical components. Based on the spatial beam profile and temporal power function of the laser, it is possible which such a system to produce complex spatio-temporal temperature gradients, relevant for addressing different research needs. It provides access to extreme conditions that are very difficult to reach with other means. Particularly, one of main objectives of this work is to investigate conditions of Reactivity Initiated Accident (RIA). The first experiments performed on inactive materials, non-irradiated uranium dioxide, is presented in order to highlight the capabilities of this technique.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3