QUANTOM® − Optimization of the online neutron flux measurement system

Author:

Schumann Olaf J.,Köble Theo,Havenith Andreas,Fu Bo,Coquard Laurent

Abstract

For the final disposal of radioactive waste, the waste packages have to meet the acceptance requirements defined by national licensing and supervisory authorities. Nondestructive methods are very much preferred over destructive methods for the qualification or re-qualification. Existing nondestructive methods as integral or segmented gamma scanning or neutron counting only determine the isotope specific activity but do not allow quantifying other non-radioactive hazardous substances. These should have been documented during creation, conditioning, and packaging of the waste. But especially for legacy waste, this documentation is often poor or even missing. This gap is to be filled by the QUANTOM® measurement device that will determine the mass fraction of elements within a 200-l-drum using the Prompt- and Delayed- Gamma-Neutron-Activation-Analysis. In order to obtain a spatially resolved characterization, it will employ a segmented scanning approach. For the determination of the absolute mass fractions, the neutron flux inside the drum has to be known accurately. As the waste itself will alter the neutron distribution and flux, it is not possible to calculate the latter a priori from the gamma measurement. Hence the neutron flux has to be measured simultaneously with the gamma radiation. In this presentation, we will introduce the system for measuring the thermal neutron flux surrounding the waste drum from which the flux within the waste package has to be reconstructed. We performed a simulation study to score several possible detector placements for an improved reconstruction performance. We will show the outcome of these calculations and present the final design of the detector arrangement.

Publisher

EDP Sciences

Reference3 articles.

1. Havenith A. et al., “QUANTOM® − Non-destructive scanning of radioactive waste packages for material characterization”, EPJ Web of Conferences, vol. 2019.

2. Radiation Detection Technologies, Inc., “Microstructured Semiconductor Neutron Detector (MSND®)”, MSND.S11.CRFS. [Online] Available: http://radectech.com/content/MSND_Datasheet_all_in_one_LC-series-1.pdf. Accessed on: Sep. 28 2018.

3. Pelowitz D. B., Ed., “MCNPX Users Manual Version 2. 7. 0,” LA-CP-11-00438, 2011.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3