Abstract
Nuclear astrophysics aims at unraveling the cosmic origins of chemical elements and the physical processes powering stars. It constitutes a truly multidisciplinary field, that integrates tools, advancements, and accomplishments from theoretical astrophysics, observational astronomy, cosmochemistry, and theoretical and experimental atomic and nuclear physics. For instance, the advent of high-energy astrophysics, facilitated by space-borne observatories, has ushered in a new era, offering a unique, panchromatic view of the universe (i.e., allowing multifrequency observations of stellar events); supercomputers are also playing a pivotal role, furnishing astrophysicists with computational capabilities essential for studying the intricate evolution of stars within a multidimensional framework; cosmochemists, through examination of primitive meteorites, are uncovering tiny fragments of stardust, shedding light on the physical processes operating in stars and on the mechanisms that govern condensation of stellar ejecta into solids; simultaneously, nuclear physicists managed to measure nuclear reactions at (or close to) stellar energies, using both stable and radioactive ion beam facilities. This paper provides a multidisciplinary view on nucleosynthesis accompanying stellar explosions, with a specific focus on thermonuclear supernovae, classical novae, and type I X-ray bursts.