Optical transport of fluorescent diamond particles inside a tapered capillary

Author:

Pin Christophe,Otsuka Ryohei,Fujiwara Hideki,Sasaki Keiji

Abstract

Optical forces provide an efficient way to sort particles and biological materials according to their optical properties. However, both enhanced optical forces and a large interaction volume are needed in order to optically sort a large number of nanoparticles. We investigate the use of a tapered glass capillary as an optofluidic platform for optical manipulation and optical sorting applications. Tapered capillaries with micrometre and sub-micrometre sizes are fabricated. After filling the tapered capillary with a colloidal solution of red fluorescent diamond particles, a green laser light is coupled into the capillary. The tapered capillary acts both as a microfluidic channel and as an optical waveguide, making it possible for the light to interact with the particles inside the sample solution. Using an incident laser power of few tens of milliwatts, we achieve optical transportation of the brightest particles inside the tapered part of the capillary. Particle velocities as high as few tens of micrometres per second are measured.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Controlled optical manipulation and sorting of nanomaterials enabled by photonic and plasmonic nanodevices;Journal of Photochemistry and Photobiology C: Photochemistry Reviews;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3