Design of the Synthetic Aperture Microwave Imager Upgrade for measurement of the edge current density on MAST-U

Author:

Allen J.O.,Vincent C. H.,Vann R. G. L.

Abstract

The Synthetic Aperture Microwave Imager (SAMI) has demonstrated the feasibility of 2D Doppler backscattering for measurement of the edge magnetic pitch angle on MAST and NSTX-U. The aim of SAMI-Upgrade (SAMI-U) is to build on this methodology to produce higher quality pitch angle data simultaneously in multiple spatial locations, enabling calculation of the edge current density. This movement from proof of principle to production quality necessitates several alterations to the design. There will be a fourfold increase in the number of antennas, as minimising the sidelobe level is key to ensuring maximum resolution in the reconstructed Doppler backscattered power map. SAMI-U will actively probe the plasma with two frequencies at the same time. These correspond to two different backscattering locations in the edge plasma which allows the edge current density to be calculated from the measured magnetic field vector. Dual-polarised sinuous antennas will be used in the array as they are planar and broadband. Polarisation separation is necessary for differentiation between the O-and X-mode cut off surfaces, as their locations can be separated by up to a few centimetres. Due to spatial constraints many of the components will be placed on a PCB behind each antenna. FPGAs will be used to stream the high data throughput, over 16 GB s−1, into PC memory.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3