1. BM@N Conceptual Design Report (BM@N collaboration) [Electronic resource]. – Mode of access: http://nica.jinr.ru/files/BM@N/BMN_CDR.pdf
2. Baranov D., Mitsyn S., Ososkov G., Goncharov P., Tsytrinov A. Novel approach to the particle track reconstruction based on deep learning methods // Selected Papers of the 26th International Symposium on Nuclear Electronics and Computing (NEC 2017), Budva, Montenegro, September 25–29, 2017. – CEUR Proceedings. – Vol. 2023. – 18.12.2017. – p.37–45.
3. Application of Kalman filtering to track and vertex fitting
4. Cho K. et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation //arXiv preprint arXiv:1406.1078, 2014.
5. Dugas C. et al. Incorporating second-order functional knowledge for better option pricing //Advances in neural information processing systems. – 2001. – С. 472-478.