Generation of thermal scattering laws with the CINEL code

Author:

Noguere G.,Xu S.,Desgrange L.,Boucher J.,Bourasseau E.,Carlot G.,Filhol A.,Ollivier J.,Hansen T.,Nassif V.,Ouente Orench I.,Colin C.,Laversenne L.,Zanotti J.-M.,Berrod Q.

Abstract

The thermal scattering laws (TSL) take into account the crystalline structure and atomic motions of isotopes bound in materials. This paper presents the CINEL code, which was developed to generate temperature-dependent TSL for solid, liquid and free gas materials of interest for nuclear reactors. CINEL is able to calculate TSL from the phonon density of states (PDOS) of materials under the Gaussian-Incoherent approximations. The PDOS can be obtained by using theoretical approaches (e.g., ab initio density functional theory and molecular dynamics) or experimental results. In this work, the PDOS presented in the ENDF/BVIII.0 and NJOY-NCrystal libraries were used for numerical validation purposes. The CINEL results are in good agreement with those reported in these databases, even in the specific cases of TSL with the newly mixed elastic format. The coding flexibility offered by Python using the JupyterLab interface allowed to investigate limits of physical models reported in the literature, such as a four-site model for UO2, anharmonic behaviors of oxygen atoms bound in a Fm3m structure, texture in Zry4 samples and jump corrections in a roto-translational diffusion model for liquid water. The use of graphic processing units (GPU) is a necessity to perform calculations in a few minutes. The performances of the CINEL code is illustrated with the results obtained on actinide oxides having a Fm3m structure (UO2, ThO2, NpO2 and PuO2), low enriched fuel (UMo), cladding (Zry4) and moderators (H2O with a specific emphasis on ice).

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3