Automated resonance evaluation; Non-convex decomposition method for resonance regression and uncertainty quantification

Author:

Walton Noah,Armstrong Jordan,Medal Hugh,Sobes Vladimir

Abstract

This work serves as a proof of concept for an automated tool to assist in the evaluation of experimental neutron cross section data in the resolved resonance range. The resonance characterization problem is posed as a mixed integer nonlinear program (MINLP). Since the number of resonances present is unknown, the model must be able to be determine the number of parameters to properly characterize the cross section curve as well as calculate the appropriate values for those parameters. Due to the size of the problem and the nonconvex nature of the parameterization, the optimization formulation is too difficult to solve as whole. A novel method is developed to decompose the problem into smaller, solvable windows and then stitch them back together via parameter-cardinality and parameter-value agreement routines in order to achieve a global solution. A version of quantile regression is used to provide an uncertainty estimate on the suggested cross section that is appropriate with respect to the experimental data. The results demonstrate the model's ability to find the proper number of resonances, appropriate average values for the parameters, and an uncertainty estimation that is directly reflective of the experimental conditions. The use of synthetic data allows access to the solution, this is leveraged to build-up performance statistics and map the uncertainty driven by the experimental data to an uncertainty on the true cross section.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3