Nuclear data activities for medium mass and heavy nuclei at Los Alamos

Author:

Mumpower M. R.,Sprouse T. M.,Kawano T.,Herman M. W.,Lovell A. E.,Misch G. W.,Neudecker D.,Sasaki H.,Stetcu I.,Talou P.

Abstract

Nuclear data is critical for many modern applications from stockpile stewardship to cutting edge scientific research. Central to these pursuits is a robust pipeline for nuclear modeling as well as data assimilation and dissemination. We summarize a small portion of the ongoing nuclear data efforts at Los Alamos for medium mass to heavy nuclei. We begin with an overview of the NEXUS framework and show how one of its modules can be used for model parameter optimization using Bayesian techniques. The mathematical framework affords the combination of different measured data in determining model parameters and their associated correlations. It also has the advantage of being able to quantify outliers in data. We exemplify the power of this procedure by highlighting the recently evaluated 239Pu cross section. We further showcase the success of our tools and pipeline by covering the insight gained from incorporating the latest nuclear modeling and data in astrophysical simulations as part of the Fission In R-process Elements (FIRE) collaboration. We advocate for the adoption of tranmission protocols such as the Unified Reaction Structures for Astrophysics (URSA) for the rapid inclusion of nuclear data into astrophysical simulations.

Publisher

EDP Sciences

Subject

General Medicine

Reference56 articles.

1. Current nuclear data needs for applications

2. Schatz H., Journal of Physics G: Nuclear and Particle Physics 43, 064001 (2016)

3. Bernstein L.A., Brown D.A., Koning A.J., Rearden B.T., Romano C.E., Sonzogni A.A., Voyles A.S., Younes W., Annual Review of Nuclear and Particle Science 69, 109 (2019), https://doi.org/10.1146/annurev-nucl-101918-023708

4. Schatz H., Reyes A.D.B., Best A., Brown E.F., Chatziioannou K., Chipps K.A., Deibel C.M., Ezzeddine R., Galloway D.K., Hansen C.J. et al., Horizons: Nuclear astrophysics in the 2020s and beyond (2022), https://arxiv.org/abs/2205.07996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3