Author:
Silveira B.M.,Belo J.H.,Pinto R.,Silva J.A.,Ferreira T.D.,Pires A.L.,Chu V.,Conde J.P.,Frazão O.,Pereira A.M.
Abstract
To study the magnetostriction of Co66Fe34 thin films, amorphous silicon microcantilevers were prepared by surface micromachining, and the 136 nm-thick magnetostrictive film was deposited by electron beam physical vapor deposition and patterned on top of the microcantilever structure. The magnetostriction of the Co66Fe34 films was confirmed by measuring the deflection of the cantilevers under a varying magnetic field, reaching displacements up to 8 nm. The configuration was simulated using COMSOL software, yielding a similar deflection behavior as a function of the magnetic field, with a film with a magneto strictive coefficient of λ S ~ 55 p.p.m. The experimental configuration uses a laser and a position sensitive detector to measure the displacement, based on an optical lever configuration, and a piezoelectric stage to calibrate the system.