Problem with gradual absorption in MSD/MSC calculations

Author:

Herman Michal,Kawano Toshihiko

Abstract

Replacing classical exciton model with the better founded Multistep Direct (MSD) and Multistep Compound (MSC) mechanisms has been impeded by incapability of the latter models to describe central part of the neutron emission spectra at incident neutron energies of about 14 MeV and above. We have ascribed this deficiency to the decrease of absorption to the MSC mechanism resulting from the concept of gradual absorption. We were able to obtain very good reproduction of experimentally measured neutron spectra using MSD/MSC calculations when this option was turned off. Such treatment is, however, at odds with the fundamental distinction between MSD and MSC mechanisms that should proceed through the chain of open (P-space) and closed (Q-space) configurations respectively. By blocking gradual absorption we allow the first stage of MSC to be fully populated from the incident channel that at higher incident energies is impossible. We discuss various attempts of addressing the problem that, so far, remains open. In addition, we present an evidence for much tighter spin distribution of particle-hole states than normally assumed.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3