Inorganic scintillator surface enhancements with 2-D photonic crystals to improve light collection

Author:

Surani Stuti,Logoglu Faruk,Albert Patrick,Wolfe Douglas,Flaska Marek

Abstract

Inorganic scintillators are widely used in various applications of gamma spectroscopy such as nuclear nonproliferation and safeguards, medical applications, space applications, and astronomy. This is due to good energy resolution, stable performance, somewhat low cost, and relatively high detection efficiency. However, many inorganic scintillators have high refractive indices and suffer significant light losses due to total internal reflection (TIR). This project proposes using optimized periodic nanostructures called photonic crystals to recover some of the light originally lost due to TIR. Photonic crystals provide an optical bridge (constructive interference) between the scintillator and the photosensor for the trapped light photons. Improving the light extraction can improve the energy and time resolutions of the scintillator, allowing for a wider range of research and industry applications. Photonic crystals can be optimized in terms of their dimensions, shapes, and materials to maximize the light extraction. Preliminary optimization tests were performed using a LYSO scintillator coupled with Si3N4 photonic crystals. First, a realistic light input source is obtained by simulating the scintillation process in Monte Carlo code Geant4. The simulated scintillation photons are collected at the LYSO-PMT boundary to obtain their energy and angular distributions. In the next step, a deterministic code OptiFDTD is used to simulate light interactions with different nanostructures. Currently, the simulations are limited to 2-D block nanostructures. The optimization tests vary the height, width, and spacing of the photonic crystals. Preliminary optimization tests show an improvement in the light transmission by more than 60%. The optimized geometry will be manufactured in the lab using various manufacturing techniques such as ion milling, electron beam lithography, or 3D printing. Various gamma sources will be used to experimentally characterize the LYSO scintillators with and without photonic crystals. These experiments will also be used to validate the simulations and demonstrate the effectiveness of the photonic crystals in improving the energy resolution. Once validated, the simulations will be used to determine optimized photonic crystals for other inorganic scintillators, such as bismuth germanate, sodium iodide, and lanthanum bromide.

Publisher

EDP Sciences

Subject

General Medicine

Reference10 articles.

1. Needs, Trends, and Advances in Inorganic Scintillators

2. Enhancing Light Extraction of Inorganic Scintillators Using Photonic Crystals

3. Joannopoulos J.D., Johnson S.G., Winn J.N., and Meade R.D., Photonic Crystals: Modeling the flow of light 2nd ed. Princeton University Press, 2008, pp 2, 156-161.

4. Photonic crystal LEDs - designing light extraction

5. Improving Light Extraction From Heavy Inorganic Scintillators by Photonic Crystals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3