Model-Based Deep Learning Algorithm for Pulse Shape Discrimination in High Event Rates

Author:

Morad Itai,Ghelman Max,Ginzburg Dimitry,Osovizky Alon,Shlezinger Nir

Abstract

Pulse shape discrimination (PSD) is at the core of radioactive particles monitoring. Conventional PSD methods are geared towards low event rates, and struggle in the presence of pileups resulting from high rate. In this work we develop a PSD algorithm that combines classic approaches with deep learning techniques, that is highly suitable for coping with the dramatic challenges associated with classifying pulses in high event rates. Common PSD algorithms for high event rates limit their research to two piled-up pulses. Our algorithm is designed and tested under severe pileup conditions, where three or more pulses were piled-up. We tested the algorithm on simulated data based on Cs2LiYCl6:Ce (CLYC) based detector pulse shapes and compare its performance to both traditional PSD algorithms and data-driven deep neural network (DNN) based algorithms. In high event rates, ranging up to 10 Mcps, the algorithm demonstrates up to 8 times fewer miss-classifications than the traditional normalized cross-correlation (NCC) approach, and up to 1.7 times fewer miss-classifications than a purely data-driven DNN-aided method.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3