Dynamic testing and simulation of 9 mm full metal jacket ammunition

Author:

Coget Yann,Novak Josip,Gütter Georg,Demarty Yaël,Rusinek Alexis

Abstract

Ballistic protection for armed forces requires a continuous performance improvement to successfully face ever evolving threats and scenarios. Ballistic tests are conventionally carried out in order to assess and validate the levels of protection to a high degree of accuracy. Although very effective, those tests are often time consuming and lack the necessary flexibility. A better approach would be to set up a numerical protocol for a number of simulations and only carry out final real life validation tests. Unquestionably, the main advantage of finite element modelling is the possibility to simultaneously evaluate a wide variety of configurations and their interactions (materials, geometry, architecture, etc.). For reliability, it is necessary to use sufficiently precise material behaviour models to accurately transcribe the phenomena observed during the impact. Our study focuses on the mechanical behaviour of 9 mm ammunition materials, namely a lead alloy core and a steel alloy jacket. For this purpose, a preliminary study (not presented here), was carried out on both the lead core and the steel jacket separately and the parameters for each constitutive model were determined. Lead-steel cylindrical samples, extracted from the ammunition, have been used for the validation of the entire constitutive model. By utilizing those samples, a high degree of the ammunitions material properties have been retained. SHPB tests have been carried out in multiple conditions, varying the striker speeds and temperatures. Additionally, the tests were recorded with an ultra-high speed camera. Strain gages were used to record signals along the input and output bars. Those measurements have been compared to numerical results using Finite Element code (ABAQUS® Explicit). A very satisfying correlation between the experimental data and the simulation has been reached, thus validating the jacket and core constitutive models and interactions for subsequent studies of ballistic impacts.

Publisher

EDP Sciences

Reference10 articles.

1. Wiśniewski A., & Pacek D. (2013). Experimental research and numerical analysis of 9 mm Parabellum projectile penetration of ultra-high molecular weight polyethylene layers. Problemy Techniki Uzbrojenia, 42.

2. Experimental and numerical assessment of non-penetrating impacts on a composite protection and ballistic gelatine

3. Peroni L., Scapin M., Fichera C., et al. (2012). Mechanical properties at high strainrate of lead core and brass jacket of a NATO 7.62 mm ball bullet. EPJ Web of Conferences. EDP Sciences, 2012. p. 01060.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3