On the dynamic and quasi-static shear strength of SLM AlSi10Mg

Author:

Amir Ben,Kochavi Eytan,Gruntman Shimon,Gale Yuval,Samuha Shmuel,Sadot Oren

Abstract

Additive manufacturing by selective laser melting (AM-SLM) is an advanced manufacturing approach in which a structure is fabricated by successive thin powder layers melted by a focused laser beam. The aerospace and automotive sectors are especially interested in the AMSLM technology that enables quick production of complex and customized structures. AlSi10Mg alloy has been found to be applicable to AM-SLM mainly because good cast-ability, strong weldability and low shrinkage during solidification. While many studies on the quasi-static mechanical properties and the structure of SLM AlSi10Mg were published, there is limited published research focused on the dynamic properties of SLM AlSi10Mg under high rate strains. In addition to that, the shear strength of SLM aluminium alloys is rarely investigated. This study presents an investigation of the AM-SLM AlSi10Mg static and dynamic shear strength and its dependency on build direction. Experiments included quasi-static shear experiments performed according to the protocol of ASTM B565, and dynamic shear tests performed using a split Hopkinson pressure bar (SHPB), coupled to innovative punch assembly that generates pure dynamic shear loads on the sample. The design of this sample holder has been validated numerically and an experimentally. The quasi-static experiments revealed that the static shear strength is independent of build direction. In contrast, the dynamic tests demonstrated that the dynamic shear strength of vertically built samples is higher by almost 11% than the shear strength of samples built horizontally. This last phenomenon explained with a suggested mechanism based onelectron microscope fractography.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3