Author:
Agirre Julen,Erice Borja,Abedul David,Saenz de Argandoña Eneko,Otegi Nagore,Galdos Lander
Abstract
Mechanical characterisation of metallic materials at intermediate strain rates is essential to calibrate and validate computational models for industrial applications such as high-speed forming processes i.e. hammer forging, blanking, forming, etc. The most common devices that perform medium to high loading rate experiments are the servo-hydraulic universal testing machines and Split Hopkinson bar systems. Here we analyse the possibility of employing an in-house designed and constructed DirectImpact Drop Hammer (DIDH) for material mechanical characterisation at medium strain rates, ranging from 100 to 300 s-1. To show the suitability of the DIDH for mechanical characterisation, uniaxial compression experiments on S235JR structural steel are conducted and compared with finite element (FE) simulations performed with an elasticthermoviscoplastic material model previously calibrated with Split Hopkinson Pressure Bar (SHPB) tests.