Evolution of dynamic shear strength of frictional interfaces during rapid normal stress variations

Author:

Rubino Vito,Tal Yuval,Rosakis Ares J.,Lapusta Nadia

Abstract

Pressure shear plate impact tests have revealed that when normal stress changes rapidly enough, the frictional shear resistance is no longer proportional to the normal stress but rather evolves with slip gradually. Motivated by these findings, we focus on characterizing the dynamic shear strength of frictional interfaces subject to rapid variations in normal stress. To study this problem, we use laboratory experiments featuring dynamic shear cracks interacting with a free surface and resulting in pronounced and rapid normal stress variations. As dynamic cracks tend to propagate close to the wave speeds of the material, capturing their behavior poses the metrological challenge of resolving displacements on the order of microns over timescales microseconds. Here we present our novel approach to quantify the full-field behavior of dynamic shear ruptures and the evolution of friction during sudden variations in normal stress, based on ultrahighspeed photography (at 1-2 million frames/sec) combined with digital image correlation. Our measurements allow us to capture the evolution of dynamic shear cracks during these short transients and enable us to decode the nature of dynamic friction.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3