“Future Earth”: Nigmatulin Hypothesis and Dynamic Model of Radiation Field of Ocean-Atmosphere System

Author:

Sushkevich Tamara,Strelkov Sergey,Maksakova Svetlana

Abstract

The United Nations has proclaimed a Decade of Ocean Science for Sustainable Development (2021-2030) to support efforts to reverse the cycle of decline in ocean health and gather ocean stakeholders worldwide behind a common framework that will ensure ocean science can fully support countries in creating improved conditions for sustainable development of the Ocean. The marine realm is the largest component of the Earth’s system that stabilizes climate and support life on Earth and human well-being. Scientific understanding of the ocean’s responses to pressures and management action is fundamental for sustainable development. Planet Earth is a natural example of a dynamic system with nonlinear processes that is in continuous change. The Earth’s radiation field is a single physical field (electromagnetic radiation) and the unifying factor of the Earth dynamical system. The Earth’s climate system is a natural environment that includes the atmosphere, the hydrosphere (oceans, seas, lakes, rivers), the cryosphere (land surface, snow, sea and mountain ice, etc.), and the biosphere that unites all living things. According to the hypothesis of R.I. Nigmatulin “Ocean is a dictator of climate”. H2O and CO2 are competing climate influences. In this article, we propose original author’s mathematical models for radiation blocks with hyperspectral data on absorption by atmospheric components. The new models are based on the development of the theory of the optical transfer operator and the method of influence functions in the theory of radiation transfer and Boltzmann equations, as well as the iterative method of characteristics with iteration convergence accelerations.

Publisher

EDP Sciences

Reference15 articles.

1. Keldysh M.V., Creative portrait on the memoirs of contemporaries (Nauka, Moscow, 2001)

2. Climate as a problem of physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3